
Evidence of Assurance: Laying the Foundation for a Credible Security Case 1
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

Evidence of Assurance: Laying the Foundation for a Credible
Security Case
Howard Lipson, Software Engineering Institute [vita1]

Chuck Weinstock, Software Engineering Institute [vita2]

Copyright © 2008 Carnegie Mellon University

2008-5-23 L1 / (E), L, M3

A security case bears considerable resemblance to a legal case, and demonstrates that security claims about
a given system are valid. Persuasive argumentation plays a major role, but the credibility of the arguments
and of the security case itself ultimately rests on a foundation of evidence. This article describes and gives
examples of several of the kinds of evidence that can contribute to a security case. Our main focus is on how
to understand, gather, and generate the kinds of evidence that can build a strong foundation for a credible
security case.

Acknowledgements
Reviews by Debra Herrmann, Andy Moore, Julian Rrushi, and Melanie Smith are gratefully acknowledged.
We also wish to thank Pamela Curtis for her skillful technical editing and Sheila Rosenthal for library
services support.

Introduction
“[T]here are two ways of constructing a software design: One way is to make it so simple that there
are obviously no deficiencies and the other way is to make it so complicated that there are no obvious
deficiencies.” (C.A.R. Hoare, 1980 Turing Award Lecture)

As modern software-intensive systems become more complex and difficult to analyze, there is an increasing
tendency to treat them as natural phenomena rather than as artificial constructs that are engineered by
humans. Thus we try to assess the security, safety, survivability, or other critical properties of such systems
through observation and experiment rather than by direct analysis or an examination of the manner in which
the system was constructed. Evaluating the security properties of a system through penetration testing, or
by noting the number (or absence) of security-related incidents, or the number and type of vulnerabilities

discovered for a given system over a given period of time4 can never provide the high assurance needed for
mission-critical systems. Nor are observations about the occurrence of security incidents timely enough for
critical applications—the system has already been deployed and exposed to whatever damage the reported

incident inflicted.5 An observed absence of security incidents might not be evidence of robust security but

instead could be an indication of the inability of the system to detect attacks,6 or a reflection of the absence
of attacks during the period of observation.

While empirical analysis of software-intensive systems has its place and does provide some evidence
that a system meets its desired security properties, when used alone it is an incomplete and unsatisfactory
approach. Richer sources of evidence can be found elsewhere, particularly through visibility into (and a
disciplined examination and “instrumentation” of) the engineering processes used throughout the system
development life cycle (SDLC). Generating and gathering evidence that the desired security properties are
being “built in” during a system’s construction and maintained throughout the system’s lifetime of use are

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html (Lipson, Howard F.)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/664-BSI.html (Weinstock, Charles B.)
4. Another empirical observation viewed as evidence of security quality is the speed with which vulnerabilities are patched.
5. Here, early adopters would be a primary testing ground for the security of new system. Of course, the best strategy here is not to

be an early adopter.
6. Such as lack of logging, failure to regularly audit existing logs, or not protecting/isolating logs from erasure or modification by

an attacker.

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/664-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Evidence of Assurance: Laying the Foundation for a Credible Security Case 2
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

crucial steps in demonstrating, with high assurance, that those security properties are present in the current
instantiation of the system.

No matter how rich the sources of available evidence are, unstructured “piles” of evidence do not provide
assurance—just as piles of evidence alone do not win or lose a legal case. Evidence should be carefully
chosen and organized using well-structured arguments that show how the evidence relates to and supports a
particular claim. Depending on the claim, some kinds of evidence (and some specific instances of evidence)
will be stronger than others. However, even evidence that is relatively weak when considered in isolation
may be compelling when combined in argumentation with other evidence. This kind of evidence-based
approach has been used for more than a decade in Europe to demonstrate the safety properties of critical
systems, and when used for that purpose is known as a safety case, or more generally an assurance case.

In recent years, there has been increasing interest and activity toward applying the assurance case approach

to domains other than safety7—and in particular to the security domain. A security assurance case (known
more succinctly as a security case) uses a structured set of arguments and a corresponding body of evidence
to demonstrate that a system satisfies specific claims with respect to its security properties. Figure 1 is
a high-level view of a security case that has a top-level claim called Security Claim 1. The validity of
that claim is demonstrated by using arguments that break the top-level claim into subclaims and then
using further arguments to ultimately link the top-level claim to a supporting body of evidence. (See the

introductory BSI article “Arguing Security – Creating Security Assurance Cases8” [Goodenough 2007] for
more details on how security cases are created and on the graphical Goal Structuring Notation [Kelly 2004]
that is commonly used to present them.)

Figure 1. High-level view of a security case

7. The application of this approach to the reliability domain is described in the Software Reliability Program Standard issued by
the Society of Automotive Engineers [SAE 2004]. The standard defines a framework for managing software reliability, in which
the concept of a software reliability case plays a central role.

8. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html (Arguing Security - Creating Security
Assurance Cases)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html

Evidence of Assurance: Laying the Foundation for a Credible Security Case 3
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

A security case bears considerable resemblance to a legal case, where the “jury” consists of one or more of
the stakeholders of the system under scrutiny and may include third parties (e.g., objective experts, certifiers,
or regulators) that represent the interests of some or all of the stakeholders. The stakeholders and/or their

representatives review the security case and decide whether the security case is credible.9 As with a legal
case, persuasive argumentation plays a major role, but the credibility of the arguments and of the security
case itself ultimately rests on a foundation of evidence.

This article describes and gives examples of several of the kinds of evidence that can contribute to a security
case. The quality of evidence is of great importance as well, and we’ll provide some discussion along those
lines, but a comprehensive treatment of the quality of particular pieces of evidence and the “evidential force”
of the combination of various pieces of evidence is an open research area that is beyond the scope of this
article. How to make a security case more credible by understanding, gathering, and even generating the
kinds of evidence that can contribute to a strong foundation for a security case is the focus of this article.

The Need for Evidence-Based Assurance
Dependability is an umbrella term that is meant to encompass a broad range of software quality attributes
including reliability, fault tolerance, and security [Avizienis 2000]. A recent National Research Council
report [CCDSS 2007] vigorously puts forth the view that claims about high dependability for software
systems must be based firmly on evidence and the existence of a credible dependability case.

“[D]ifficulty regarding the lack of evidence for system dependability leads to two conclusions,
reflected in the committee’s findings and recommendations below: (1) that better evidence is needed,
so that approaches aimed at improving the dependability of software can be objectively assessed, and
(2) that, for now, the pursuit of dependability in software systems should focus on the construction and
evaluation of evidence.

The committee thus subscribes to the view that software is “guilty until proven innocent,” and that
the burden of proof falls on the developer to convince the certifier or regulator that the software is
dependable. This approach is not novel and is becoming standard in the world of systems safety,
in which an explicit safety case (and not merely adherence to good practice) is usually required.
Similarly, a software system should be regarded as dependable only if it has a credible dependability
case” [Jackson 2007].

Clearly, this viewpoint confirms the need for a credible security case based on a sound body of evidence to
support high-assurance claims of security.

Building In Security Assurance
Throughout the BSI website we make the point about building in security from the outset rather than
attempting the often futile exercise of bolting security on later. Similarly it is difficult, cost-prohibitive, and
often impossible to gather sufficient evidence of assurance to support claims of high security for a system
that has already been built and deployed or has even reached an advanced stage of design. We believe that
a “security case” must be part of any system design from the outset and should be developed alongside the
system it supports.

As the initial system design may be highly abstract and incomplete, so will be the security case, and the
initial claims and arguments may be fuzzy and incomplete. However, the initial security case will be a
framework that gives a preliminary indication of the kinds of evidence that are needed to support the claims.
As such, it is a cue to the development team that when the life cycle development processes generate artifacts

9. As security cases become more commonplace, similarities between the security case under consideration and previous security
cases for known systems with established performance histories may make the decision process easier, in a manner somewhat
akin to legal precedent. For example, a security case in which the only substantive difference from a widely accepted security
case is a less hostile threat environment should itself be readily accepted. Of course, stakeholders might then ask what cost
savings could be garnered by easing off on some of the security controls that may not be needed for a system operating under
reduced threat. Analysis of the effects of this tradeoff would require modification of the security case and further review.

Evidence of Assurance: Laying the Foundation for a Credible Security Case 4
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

that can serve as evidence—requirements documents, design rationale, test plans, test results, and results of
code reviews—the artifacts should be preserved for use in a security case. If a review of the early security
case indicates that an argument is weak and could be bolstered by a piece or pieces of evidence that would
typically not be available in due course during development, changes to SDLC processes can be made to
explicitly generate the necessary evidence so it will be available to future reviewers of the more mature
security case. Moreover, even preliminary versions of the security case may be provided to reviewers,
certifiers, or regulators, who may recommend the kinds of supporting evidence they would like to see or
would require for future review. Development processes that do not generate the desired forms of evidence
may be considered inadequate for the production and certification of high-assurance systems with respect to
security.

The Nature of Security and Survivability Claims
Gathering and generating evidence for use in a security case cannot be carried out effectively without a basic
understanding of the nature of the claims that the evidence must support, so that only evidence with at least
a reasonable (and preferably high) degree of relevance to the claim is considered. Moreover, the quality of
a piece of evidence can only be evaluated in light of the claim it is meant to substantiate. For example, all
things being equal (that is, absent any specific context), a full fingerprint is considered to be better quality
evidence than a partial fingerprint and can support stronger arguments by a prosecutor. However, in support
of the claim that John Doe was present at a crime scene, a partial fingerprint at the crime scene matching
John Doe with 85% probability is, of course, much stronger evidence than a full fingerprint found 10 miles
away even if the full print matches John Doe with 99% probability.

Security claims are of two general types: (1) claims about the requirements-based security properties of a
system and (2) claims about the absence of vulnerabilities in the design or implementation that could be

exploited to break the system’s security model.10 The first category involves the traditional CIA security
properties confidentiality, integrity, and availability, which apply in the general context of the processing,
storage, and communication of data and the provision of services. These basic properties are often extended
to include three additional properties: authentication (validating user identity), authorization (granting
access only to legitimate users), and non-repudiation (ensuring that a party performing a given action will be
unable to successfully refute that they were involved). Non-repudiation is sometimes referred to simply as
accountability, although all three of the extended properties can be thought of as supporting accountability
as well. Since these extended properties can be directly derived as consequences of the basic properties, they
are often considered to be implicit in the CIA properties and are often not listed separately.

The second general category of security claim is the absence of vulnerabilities that could be exploited to

break the security model, somewhat akin to what a colleague termed the “Indiana Jones attack.”11 In a
classic scene from the movie “Raiders of the Lost Ark,” the hero, Indiana Jones (Indy), is confronted by a
master swordsman menacingly twirling a huge sword in an intimidating demonstration of his skill. It appears
that Indy would have little chance of survival against this adversary until, with a look of impatience, Indy
just pulls out a gun and shoots him. By doing so, Indy breaks both the security model of his adversary and
the movie cliché of the hero always “playing fair” and strictly within the presumed rules of engagement.
Vulnerabilities arise when assumptions about the (threat) environment in which a system operates are
incorrect or incomplete or when presumed constraints on the behavior of a potential adversary do not reflect
reality.

A more comprehensive security-related concept called survivability is a blend of computer security and
organizational risk management [Lipson 1999]. It’s an umbrella term like dependability, but more sharply
focused on security. Survivability is the ability of a system to fulfill its mission, in a timely manner, despite
attacks, accident, or subsystem failures. Under stress the system should degrade gracefully, at the very least
providing a set of essential services specified in the survivability requirements derived from the system’s

10. A security model is an abstract representation of the means by which a system enforces its security requirements within a given
threat environment.

11. Lipson conversation with John McHugh on October 28, 2007, at the ACM Quality of Protection Workshop, Alexandria, VA.

Evidence of Assurance: Laying the Foundation for a Credible Security Case 5
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

mission.12 Claims relevant to survivable systems include the ability to satisfy the 3 Rs, resistance to attack
(e.g., security) or other stress, recognition of a survivability problem or crisis and its effect on the system,
and recovery, the ability to restore full services after an attack or other crisis. Another type of recovery
claim is that in the event essential services are interrupted during a crisis, the system will recover sufficient
capability to get those essential services (or an alternate set of comparable services) back up and running
quickly enough so that the mission is not jeopardized. (An example would be radar blinking out momentarily
but not enough to affect air traffic control.) These kinds of assurance claims are not binary, but rather are
always tempered by the notion that the residual risk has been reduced to as low as reasonably practicable (a

principle known as “ALARP”).13 A good discussion of ALARP, as well as a pattern for its application, can
be found in The Safety of Software – Constructing and Assuring Arguments [Weaver 2003].

A Framework for Evidence of Assurance of Security Properties
The kinds of evidence that can provide assurance about the security properties of a system should be derived
not only from the system itself, but also from the entire context in which the system exists. For example,
determining whether the security risks to the system’s mission have been reduced to as low as reasonably
practicable (ALARP) cannot be accomplished by considering (e.g., analyzing or observing) the system’s
security mechanisms solely in isolation. Of course it is well understood within the security community that,
at the very least, evidence about the threat environment within which the system operates must be thoroughly
considered.

However, the context in which a system exists is significantly broader than its threat environment alone.
Figure 2 shows the basic outline of a framework that we propose for categorizing and organizing evidence of
assurance for a system-in-context.

Figure 2. Evidence of assurance framework for a system-in-context

System Enablers or Threats

Elements of a System-
in-Context

Actors Processes Technology

System Owner

Mission

Environment

System

Life Cycle Capability

Elements of a System-in-Context
A system-in-context contains these elements:

• System Owner – The organization (or individual) that has primary control over the system’s
construction, operation, and evolution and who determines its mission. Of course, there are large
composite systems-of-systems that have no owner, the Internet being a primary example. However,
we’re primarily interested in creating security cases for business and organizational systems that have
a clear owner and a clear mission, even if the system is partially or primarily composed of components
and services that are provided by and controlled by others.

12. Some refer to this general concept as resilience. “An organization that has resilient operations should be able to systematically
and transparently cope with disruptive events so that the overall ability of the organization to meet its mission is minimally or
not adversely affected” [Caralli 2007].

13. That is, the cost of further reducing the risk would be prohibitive or disproportionately high when compared to the
corresponding benefits. This determination is made in the context of the criticality of the system that is the subject of the
security case (i.e., based on the projected consequences of compromise or other system failure).

Evidence of Assurance: Laying the Foundation for a Credible Security Case 6
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

• Mission – A very high-level abstract description of the mission of the system, from which detailed
requirements for security and other quality attributes are derived. The mission should be abstract
enough so that, in the event of a crisis, alternate and diverse ways of fulfilling the mission are possible,
which allows for a system design that is survivable and resilient even if some portion of the system is
compromised by attack or accident. Otherwise security becomes a binary, “all or nothing” condition
and leads to a brittle system that will likely fail in the event of an intrusion or compromise of any its
components or subsystems.

• Environment – This includes the technical, social, political, economic, legal, and regulatory
environment in which the system operates. Some salient elements of the environment include

• legal mandates and regulation (for security and privacy like SOX, HIPAA)

• security organizations and incident response teams

• colleges and universities with engineering and security programs

• security standards, standards bodies, and trade associations

• commonly accepted certifications, academic credentials, engineering best practices and generally
accepted state-of-the-practice (i.e., “due care”)

• law enforcement

• international treaties

• malicious actors (along with analyses of their motivations)

• attack methodologies and tools

• hacker engineering capabilities

• hacker organizations and communication channels that spread information about vulnerabilities
and exploits

• criminal organizations, nation states, and terrorists that provide resources that support the activities
of attackers

• System – This is the system itself and includes cyber, physical, and human elements. It includes
deployed code, components, subsystems, services, hardware, and facilities (e.g., physical plant),
whether developed and provided in-house, acquired from vendors, or outsourced. The system also
includes operators, policies and procedures (whether manual or automated), staff that use or add value

to the cyber services the system provides,15 and guards for physical security. Any elements or services
that are part of the system (cyber, physical, or human) may be outsourced.

• Life Cycle Capability – Refers to the ability of the system owner (typically an organization) to construct
and maintain the system throughout the system’s engineering life cycle. In addition to an organization’s
in-house engineering capability, this refers to the organization’s expertise and risk management
evaluation skills with respect to acquisition and outsourcing in a manner that produces a system that
meets mission objectives, in particular with respect to the security properties of the system.
 When evaluating the security properties of a system that is in the early design phase, artifacts from
the life cycle are the primary means of gathering assurance evidence, since there is no running system to
test, profile, or analyze. But even after the system is deployed, life cycle evidence can play an important
role in system evolution and the ability to react to a changing environment and evolving threats. Typical
life cycle phases include the following (an iterative spiral software engineering methodology is implied
[Mead 2001]):

• Mission Specification

• Threat Analysis

• Concept of Operation (Use and Misuse Scenarios)

• Requirements

• Architecture and Design

• Acquisition

• Implementation and Integration

• Test

Evidence of Assurance: Laying the Foundation for a Credible Security Case 7
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

• Deployment

• Operations

• Evolution

• Decommissioning

• Incident and Emergency Response Capability – No modern large-scale, highly distributed system is
100% immune from attack, nor can a system’s automated recovery mechanisms handle every possible
crisis scenario. An incident response capability is an essential aspect of the survival and resiliency of
any mission-critical system, though this capability may rely in whole or part on an external trusted
organization, such as a national incident response team or a response team dedicated to a particular
industry segment. Note that emergency response (also called disaster planning and recovery) is
distinguished from normal incident response because resource demands can be drastically different and
may involve outside assistance from government emergency services.

System Enablers or Threats – Actors, Processes, and Technology
Corresponding to each element of a system-in-context are the three classes of contributors to system

assurance: Actors (organizations and individuals), Processes, and Technology.16 Actors, processes, and
technology either enable a system to fulfill a mission or can threaten it. Hence, they are the three categories
from which evidence of assurance can be generated, gathered, and assessed. Often, a piece of evidence will
not fall cleanly into (or be drawn solely from) a single category but will represent some combination, such as
actors and processes, processes and technology, or all three. For example:

• Evidence that specific actors have the competence to correctly carry out a particular risk mitigation
process (AP).

• Evidence that a given tool correctly implements a security analysis process (PT).

• Evidence that a specific actor followed a prescribed procedure P by applying a security analysis tool to

component C, version V, on date D.17

Evidential Attributes of Actors, Processes, and Technology
Let’s take a more detailed look at the attributes of actors, processes, and technology that relate most strongly
to the kinds of evidence that would contribute to compelling assurance arguments and a credible security
case. First, we’ll look at actors and which attributes of actors convey evidence of assurance, particularly with
respect to security. Later, we’ll examine the intersection of actors with the elements of a system-in-context.

Actor Attributes
Actor attributes that are relevant to evidence of assurance include

• Competence – an actor’s skills/expertise for a given task, or more generally, in a specific domain (e.g.,
credentials are one source of evidence)

• Capacity – how much can be accomplished within a given period of time

• Trustworthiness – this relates solely to intent: the actor’s veracity, honesty, and alignment with the

mission of the system18

• Objectivity – absence of conflicts of interest in a given context

• Resources – assets (including economic assets of organizations)

To illustrate how these attributes relate to evidence of assurance, we’ll present a few examples. However,
since the quality of evidence can only be evaluated within its context of use, it is good practice to present and
describe assurance evidence using a template that contains at least the following elements:

16. An autonomous system-in-context may also play the role of an actor. This makes the three categories a generalization of the
oft-cited People, Processes, and Technology. However, within this article we’ll only consider actors to be organizations and
individuals.

Evidence of Assurance: Laying the Foundation for a Credible Security Case 8
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

Evidence:
Type of Evidence: (classification within evidence framework)
Claim Supported:
Assumptions:
Argument (include caveats):

Also note that actors are not restricted to those within the organization that controls the system-in-context.
Actors include the full range of individuals and organizations that can impact the security of your system,
including vendors, users, attackers, competitors, governmental regulators, certifiers, standards bodies, service
providers, and organizations to which you’ve outsourced any of your system’s functionality or services.

Example 1: Absence of Common Software Defects that Lead to Vulnerabilities

Evidence All actors on programming team for module X have
a certificate showing successful completion of the
CERT secure coding course.

Type of Evidence Actor > Competence & Life Cycle Capability >
Implementation > Secure Coding => Credential
(Training and Education)

Claim Module X does not contain any of the common
software defects that lead to vulnerabilities.

Assumption Secure coding course provides sufficient

knowledge.19 Certificate attests to learning, not
merely attendance. Credential is sufficiently up-to-
date to reflect expertise in the latest secure coding
techniques. The programming team has applied the
secure coding techniques learned in the course to the
code under consideration.

Argument All programmers working on module X are
competent in secure coding techniques.

As with a legal case, combining diverse but complimentary pieces of evidence can bolster the quality of
an overall body of evidence (i.e., increase its “evidential force”) and therefore strengthen the credibility
of a security case [Bloomfield 2003, Pfleeger 2005]. Example 1 provides evidence about preventing the
introduction of vulnerabilities into code. This evidence supports an argument that the claim is satisfied but
is not, by itself, enough to convince any reasonable reviewer that the claim is true. Additional evidence
is required. For instance, code reviews can provide evidence that secure coding best practices have been
followed (i.e., the techniques learned during the secure coding course have actually been applied to the
code and with demonstrable competence). Complementary evidence about the use of static analysis tools
can provide evidence that no common coding errors that lead to vulnerabilities have been detected, or if
detected, that the errors have been removed. A formal methods approach (e.g., model checking) can provide
very strong evidence through formal proof that a given portion of code is free of such defects. Use of a
type-checking programming language that prevents the introduction of defects such as buffer overflow
vulnerabilities would be further evidence in support of the claim in Example 1.

The assumptions form an important part of the argument. The more “off the wall” the assumptions, the less
likely that the argument will be believed. For this reason, the fewer the assumptions, the better. One way to
show the validity of an assumption such as “secure coding course provides sufficient knowledge” is through
providing an assurance case for the course.

Process Attributes
Process attributes that are relevant to evidence of assurance include the following:

• Capability – What can actors accomplish by using the process?

Evidence of Assurance: Laying the Foundation for a Credible Security Case 9
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

• Quality – How good is the process at achieving a desired result, be it analysis of code for a desired
security property or the ability to construct a component with a high assurance of security? Quality
arguments include conformance to best practices as embodied in recognized standards (or the more
general claim of “adherence to industry standard practice “ or “due care”) and the existence of
studies that validate the effectiveness of the process, as well as typically weaker arguments about the

performance history associated with systems for which this process was used.20

• Cost/Benefit – How practical is the process, i.e., how much does the process cost with respect to the
value obtained?

• Context of Use – What is the context in which the process is applicable and achieves valid results?

• Repeatability – Within its context of use, is the process readily repeatable over time across different
project teams, across different organizations, even across different application domains (i.e., industry
segments)? For example, is the process well documented and easy to follow? What organizational and
individual resources are needed (e.g., skill sets and tools) so that the process produces the same results
each time it is executed, regardless of who executes it?

• Reviewable – Does the process document intermediate steps (intermediate inputs and outputs), along
with the associated rationale, so that the entire process is reviewable (for example, by an independent
third party)?

• Schedule, Workflow, and Resources – What actor resources (with what skill sets) and what technology
resources are required to carry out the process, and for how long are they needed? What interactions are
there among the individuals and workgroups (internal and external) participating in the process? How
predictable is the schedule for the process? This attribute is closely related to the cost/benefit attribute
above.

• Accountability/Attribution – Does the process keep track of the actions of the participating actors,
and are the appropriate actors accountable for their actions (i.e., are the results of significant activities
attributable to specific actors?) For example, are test results dated, linked to the correct version number
of the code, digitally signed, and stored in a database for future use as evidence of assurance?

Example 2: Requirement Document Accurately Reflects Security Concerns

Evidence A requirements document containing a set of initial
security requirements and a description of the
decision-making process and rationale for how
they were selected. This evidence is the output
from applying the nine-step Security Quality
Requirements Engineering (SQUARE) methodology
[Mead 2005].

Type of Evidence Process & Life Cycle Capability > Security
Requirements => Security Requirements (and
Rationale) Document

Claim The security requirements accurately reflect the
high-priority security concerns of the system
stakeholders.

Assumption The process is sound and used valid inputs and
techniques to produce its output. The process
produced valid results in the context of the domain
in which it was applied. Actors participating in the
process had sufficient competence to satisfactorily
fulfill their role in the process.

Argument Competent staff applied the SQUARE methodology,
a sound requirements elicitation and prioritization
process in an appropriate context of use. The

Evidence of Assurance: Laying the Foundation for a Credible Security Case 10
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

output of the process correctly reflects the high-
priority security concerns of the system stakeholders
because the process is based on business drivers,
threat analysis, risk analysis, risk tolerance of the
organization, and cost/benefit analysis. The process
documents the rationale for the selection of security
requirements, along with all intermediate steps, so
that the results of the entire process can be reviewed
by others (e.g., outside experts).

Technology Attributes
Technology attributes that are relevant to evidence of assurance include the following, several of which are

the same as process attributes:21

• Capability – What can the technology accomplish?

• Quality – Which software or system quality attributes (security, reliability, fault tolerance, etc.) are
associated with the technology?

• Visibility – Are the artifacts of the life cycle processes used to create the technology available to users,
customers, certifiers and others, so that the technology’s quality attributes can be assessed through
analysis of those artifacts?

• Cost/Benefit – How affordable is the technology relative to its value?

• Context of Use – What is the context in which the technology is applicable and achieves valid results?

• Resources – What actor resources (with what skill sets), processes, and other technology resources are
required to make effective use of the technology?

• Traceability/Accountability/Attribution – Does the technology keep track of the actions of the
participating actors, and are the results of significant activities attributable to specific actors? Are
significant events logged and available for audit?

Example 3: Formal Verification of a Security Property

Evidence Output from a model-checking tool

Type of Evidence Technology & System => Analysis > Formal
verification

Claim Protocol/Code/Component satisfies a security

property22

Assumption The formal model matches reality

Argument The argument must show how the model-checking
language translates faithfully from the real world
and that no significant assumption is left out. Often
a formal language is arcane, making it difficult for
a non-expert observer to verify mapping from real-
world to model.

Example 4: Conformance to a Security Standard

Evidence (1) Document specifying a process P based on
security standard S, and

(2) a set of life cycle artifacts showing the
implementation of component C using process P.

21. For a detailed discussion of the kinds of evidence of assurance that could be used to assess the security and survivability of
commercial-off-the-shelf (COTS) products, see [Lipson 2002].

Evidence of Assurance: Laying the Foundation for a Credible Security Case 11
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

Type of Evidence (1) Process & Life Cycle Capability > Conformance
to Standards => Process Specification

(2) Process & Life Cycle Capability >
Implementation => Artifacts (Code, Test Results,
Code Review Results)

Claim Component C constructed using process P has the
desired security properties.

Assumption The process P faithfully captures all relevant aspects
of the standard S. The standard S embodies best
practice. The best practice has been shown to be
effective in producing the desired security property.

Argument Show that the mapping from standard S to process
P is comprehensive. Preferably use studies to show
effectiveness of S, otherwise argue performance
history (less formal than studies) or expert
opinion. Can also argue “independence,” such as
objectiveness of the standards body (e.g., IEEE)
versus a quickly constructed “standard” from a trade
group.

Example 5: Test Results as Evidence of Security Properties

Evidence Results from running test of the system using attacks
of type A

Type of Evidence Technology & System => Test Results

Claim The system is secure against attacks of type A.

Assumption The tests can adequately exercise the code, and
therefore the results are a reasonable measure of
code quality.

Argument Since the level of assurance needed isn't ultra-high,
it is possible to run enough tests for long enough
to make the results believable. The tests have good
coverage of the software under test. The testing
methods have been proven to work in other similar
systems.

Example 6: Simulation Results as Evidence of Security Properties

Evidence Results from simulated attack A on the system

Type of Evidence Technology & System => Simulation

Claim The system is secure against attacks of type A.

Assumption The simulation is an adequate model of the system.

Argument Show how the simulation can be taken as a
representative of the real system. Show that the
simulation results are representative of real results.

This simulation example and the previous testing example illustrate two types of evidence that can be
mutually supportive. Simulation allows early analysis of system properties, but it assumes a sufficient match
between the quality attributes of the simulation model and those of the actual system. A major advantage is

Evidence of Assurance: Laying the Foundation for a Credible Security Case 12
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

that any corrections or improvements can be made early in the development processes, which reduces overall
cost. However, any significant deviation between the model and the actual system can be quite problematic.
Testing is performed on the actual system software, either pre-release (e.g., unit or integration testing) or
deployed (e.g., penetration testing), but any problems that are discovered must be remedied later in the
engineering life cycle, where changes are more expensive.

Example 7: Evidence of Security Growth (i.e., continuous improvement)

Evidence (1) A report summarizing process improvement
effort E over past two years

(2) The number of vulnerability reports for the
system has decreased by 50% for each of the last two
years

Type of Evidence Process & Life Cycle Capability > Process
Improvement => Report on Process Improvement
Effort / Specification of Modified Processes

Process & Incident Response > Vulnerability
Reports => Statistics

Claim The security of the system is showing continuous
improvement (a.k.a. “security growth”).

Assumption There is a performance history of security growth
associated with process improvement efforts similar
to E, for this industry sector.

Argument Growth curves for similar systems apply to this
system.

The history of security of this system is such that it
shows security is increasing (less frequent reports of
vulnerabilities).

A Few Basic Steps for Building Assurance In
Take steps to preserve existing evidence and to improve or generate new evidence throughout the system
development life cycle. For example, instead of simply collecting raw test results (or not collecting them at
all), record what modules and versions they apply to and the date and time run, and have the results signed
by a supervisor or other responsible party—ideally with a digital signature that confirms the validity of
the entire document. Carefully preserve your evidence within a version control system database. There
is additional cost associated with collecting and generating higher quality evidence, but managers should
consider the benefits of being able to back up stronger claims about their system’s security. Supplementing
raw test results with some additional narrative that interprets the test results in terms of the security
requirements (providing traceability back to the requirements specification, or even mapping the results back
to the threat analysis) would greatly improve the quality of the evidence, instead of merely preserving raw
data that may not be understood or be of value at a future date. You may even wish to invite objective third-
party expert reviewers to participate in the very early stages of the development life cycle to help you decide
what evidence to build in (based on their experience with what certifiers and regulators usually look for). As
a result, the evidence will be guaranteed to be available to certifiers or regulators who will require it once the
system is complete.

The Future of Security Cases – Open Issues and Challenges
Although our main focus has been on security cases, these open issues and challenges apply to assurance
cases for any software or system quality attribute.

Evidence of Assurance: Laying the Foundation for a Credible Security Case 13
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

Dealing with Massive Amounts of Evidence
Tools and methodology improvements are needed to handle the massive amount of evidence needed to
demonstrate assurance even for systems of moderate size. Intuitively, the amount and quality of evidence
should be proportional to the degree of assurance specified by the top-level security claim, which in turn
should be commensurate with the criticality of the system that is the subject of the security case. The trend
toward ultra-large-scale systems [Northrop 2006] means that the amount of evidence needed to support
security claims for high-assurance systems will be even more massive in the future. Automated tools to
support security case analysis as well as artifact analysis will be urgently needed.

Dealing with Complexity
Systems must be built differently. We must generate and gather evidence from the outset and build systems
with simplicity in mind [Sha 2001, Jackson 2007] to make the creation of credible assurance cases more
practical. The creation and maintenance of the assurance case will become as important a goal for the
development team as the system itself, because without the accompanying security case the system would
not be permitted to be used in critical applications where public health and safety are at stake.

Don’t Treat Software or System Quality Attributes in Isolation
Assurance cases for each of the software or system quality attributes (SQAs) should not be built in isolation.
The security case should be part of a larger survivability or dependability case that includes all SQAs
relevant to mission success (e.g., security, reliability, and safety). Tradeoffs among the various SQAs
must be explicitly demonstrated in a composite survivability (or dependability) case along with the design
rationale so that as the system evolves, these tradeoffs can be maintained. Moreover, to reflect changes
in the threat environment, these tradeoffs can be explicitly modified within updated assurance cases that
demonstrate that the new SQA tradeoffs have actually been realized.

Training, Education, and Awareness Are Essential
Our society’s critical dependence on highly distributed, networked systems means that accurately assessing
the security of such systems is essential. However, security properties are particularly difficult to evaluate
when the only evidence we have is glitzy brochures, penetration test results, and testimonials. A higher level
of confidence is needed, and security cases can provide that higher degree of assurance.

As we’ve stated throughout this article, the credibility of a security case ultimately rests on a foundation of
evidence. The more familiar the practitioner is with the nature of evidence that can contribute to a security
assurance case and how to facilitate the gathering, generation, and preservation of such evidence, the more
valuable that practitioner will be to their employer and to the stakeholders of the systems their organization
has developed or acquired. Many more scientific studies are needed to provide guidance to practitioners
by validating or refuting today’s best practices, methodologies, and tools that are the source of much of
the currently available evidence of assurance. Training, education, and awareness about the emerging
discipline of assurance cases are essential not only for system and software engineering practitioners and
their managers, but also for policy makers (including regulators) and for all organizations and individuals
who are increasingly dependent on the critical services provided by modern software-intensive systems.

Bibliography

Ankrum 2005 Ankrum, T. S. & Kromholz, A.H. “Structured
assurance cases: three common standards,” 99-108.
Proceedings of the Ninth IEEE International
Symposium on High-Assurance Systems Engineering
(HASE’05), 2005.

Avizienis 2000 Avizienis, Algirdas, Laprie, Jean-Claude, & Randell,

Brian. “Fundamental Concepts of Dependability23.”

http://www.cert.org/research/isw/isw2000/papers/56.pdf

Evidence of Assurance: Laying the Foundation for a Credible Security Case 14
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

Proceedings of the Third Information Survivability
Workshop (ISW2000).

Bloomfield 2003 Bloomfield, Robin & Littlewood, Bev. “Multi-
legged Arguments: The Impact of Diversity
Upon Confidence in Dependability Arguments.”
Proceedings of 2003 International Conference on
Dependable Systems and Networks, San Francisco,
California. IEEE Computer Society Press, 2003.

Caralli 2007 Caralli, R., Stevens, J., Wallen, C., White, D.,
Wilson, W., & Young, L. Introducing the CERT

Resiliency Engineering Framework24: Improving
the Security and Sustainability Processes (CMU/
SEI-2007-TR-009). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University,
2007.

CCDSS 2007 Committee on Certifiably Dependable Software
Systems. Software for Dependable Systems:

Sufficient Evidence?25 Edited by Daniel Jackson,
Martyn Thomas, and Lynette I. Millett. National
Research Council, 2007 (ISBN 978-0-309-10394-7).

Despotou 2007 Despotou, Georgios. “Managing the Evolution of
Dependability Cases for Systems of Systems.” PhD
thesis, High Integrity Systems Research Group,
Department of Computer Science, University of
York, United Kingdom, April 2007.

Goodenough 2007 Goodenough, J., Lipson, H., & Weinstock, C.
“Arguing Security – Creating Security Assurance

Cases26.” Department of Homeland Security Build
Security In website, Jan. 2007.

Graydon 2007 Graydon, Patrick J.; Knight, John C.; Strunk,
Elisabeth A. “Assurance Based Development of
Critical Systems,” 347-356. Proceedings of the 37th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2007, June
2007.

Kelly 2004 Kelly, Tim P. & Weaver, Rob A. “The Goal
Structuring Notation –A Safety Argument Notation.”
Proceedings of the Dependable Systems and
Networks 2004 Workshop on Assurance Cases, July
2004.

Kornecki 2003 Kornecki, Andrew J. “Assessment of Software
Safety Via Catastrophic Events Coverage,” 1139–
1144. Proceedings of the 21st IASTED International
Multi-Conference on Applied Informatics, 2003.

Lautieri 2004 Lautieri, Samantha, Cooper, David, Jackson,
David, & Cockram, Trevor. “Assurance Cases:
How Assured Are You?” Supplemental Volume
to DSN-2004, The Proceedings of the 2004

http://www.sei.cmu.edu/publications/documents/07.reports/07tr009.html
http://www.sei.cmu.edu/publications/documents/07.reports/07tr009.html
http://www.nap.edu/catalog.php?record_id=11923
http://www.nap.edu/catalog.php?record_id=11923
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html

Evidence of Assurance: Laying the Foundation for a Credible Security Case 15
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

International Conference on Dependable Systems
and Networks, 2004.

Lipson 1999 Lipson, Howard & Fisher, David. “Survivability
—A New Technical and Business Perspective on

Security27,” 33–39. Proceedings of the 1999 New
Security Paradigms Workshop. Caledon Hills,
Ontario, Canada, Sept. 22–24, 1999. New York:
Association for Computing Machinery, 2000.

Lipson 2002 Lipson, Howard, Mead, Nancy, & Moore, Andrew.
“Can We Ever Build Survivable Systems from
COTS Components?” Proceedings of the 14th
International Conference on Advanced Information
Systems Engineering (CAiSE' 02). Toronto, Ontario,
Canada, May 27-31, 2002. Heidelberg, Germany:
Springer-Verlag (LNCS 2348), 2002.

Littlewood 2007 Littlewood, Bev. “Limits to Dependability
Assurance – A Controversy Revisited.” Presentation
at the 29th International Conference on Software
Engineering, ICSE 2007, May 20-26, 2007,
Minneapolis, MN. IEEE Computer Society TCSE;
ACM SIGSOFT.

Mead 2001 Mead, Nancy R., Linger, Richard C., McHugh,
John, & Lipson, Howard F. “Managing Software
Development for Survivable Systems.” Annals of
Software Engineering, Volume 11, No. 1, 2001, 45–
78.

Mead 2005 Mead, N. R., Hough, E., & Stehney, T. Security
Quality Requirements Engineering (SQUARE)

Methodology28 (CMU/SEI-2005-TR-009).
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2005.

Moore 2000 Moore, Andrew & Strohmayer, Beth. Visual

NRM User's Manual29 (NRL/FR/5540--00-9950).
Washington, DC: Naval Research Laboratory, May
31, 2000.

Northrop 2006 Northrop, Linda et al. Ultra-Large-Scale Systems:

The Software Challenge of the Future30. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, June 2006.

Okun 2007 Okun, Vadim, Guthrie, William F., Gaucher,
Romain, & Black, Paul E. “Effect of Static
Analysis Tools on Software Security: Preliminary
Investigation.” Proceedings of the 2007 ACM
workshop on Quality of Protection. ACM
Conference on Computer and Communications
Security (ACM CCS), 2007.

Ozment 2007 Ozment, Andy “Improving Vulnerability Discovery
Models.” Proceedings of the 2007 ACM workshop
on Quality of Protection, ACM CCS, 2007.

http://www.cert.org/archive/pdf/busperspec.pdf
http://www.cert.org/archive/pdf/busperspec.pdf
http://www.cert.org/archive/pdf/busperspec.pdf
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html
http://www.chacs.itd.nrl.navy.mil/projects/VisualNRM/
http://www.chacs.itd.nrl.navy.mil/projects/VisualNRM/
http://www.sei.cmu.edu/uls/the_report.html
http://www.sei.cmu.edu/uls/the_report.html

Evidence of Assurance: Laying the Foundation for a Credible Security Case 16
ID: 973-BSI | Version: 15 | Date: 8/9/10 2:52:27 PM

Pfleeger 2005 Pfleeger, Shari Lawrence. “Soup or Art? The
Role of Evidential Force in Empirical Software
Engineering.” IEEE Software, January/February
2005.

SAE 2004 SAE. JA 1002 Software Reliability Program

Standard31. Society of Automotive Engineers,
January 2004.

Sha 2001 Sha, Lui. “Using Simplicity to Control Complexity.”
IEEE Software, July/August 2001.

Tsai 1998 Tsai, W.T., Mojdehbakhsh, R., Zhu, F. “Ensuring
System and Software Reliability in Safety-Critical
Systems,” 48-53. Proceedings of the 1998 IEEE
Workshop on Application-Specific Software
Engineering and Technology (ASSET-98), 1998.

Van Eemeren 1996 Van Eemeren, Frans H., Grootendorst, Rob,
Johnson, Ralph H., Plantin, Christian, Willard,
Charles A., Zarefsky, David, Blair, J. Anthony,
Henkemans, A. Francisca Sn, Krabbe, Erik,
Woods, John H. Fundamentals of Argumentation
Theory: A Handbook of Historical Backgrounds
and Contemporary Developments. Mahwah, NJ:
Lawrence Erlbaum Associates, Inc., 1996.

Weaver 2003 Weaver, Robert A. “The Safety of Software –
Constructing and Assuring Arguments.” PhD diss.,
University of York, September 2003.

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2011.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

http://www.sae.org/technical/standards/JA1002_200401
http://www.sae.org/technical/standards/JA1002_200401
mailto:permission@sei.cmu.edu

